基于Python的开源人脸识别库Face Recognition:离线识别率高达99.38%

基于Python的开源人脸识别库Face Recognition:离线识别率高达99.38%

  • 开源协议:MIT
  • 操作系统: Windows Linux OS X
  • 开发语言:Python
  • 项目所有者:ageitgey
  • 收录时间:2017-07-28
  • 分享:
编辑评级
4

项目详细介绍

该项目是要构建一款免费、开源、实时、离线的网络 app,支持组织者使用人脸识别技术或二维码识别所有受邀人员。有了世界上最简单的人脸识别库,使用 Python 或命令行,即可识别和控制人脸。

该库使用 dlib 顶尖的深度学习人脸识别技术构建,在户外脸部检测数据库基准(Labeled Faces in the Wild benchmark)上的准确率高达 99.38%。

这也提供了一个简单的 face_recognition 命令行工具,你可以打开命令行中任意图像文件夹,进行人脸识别!

特征

找出图片中的人脸

找出下面图片中所有的人脸:

import face_recognition
image = face_recognition.load_image_file("your_file.jpg")
face_locations = face_recognition.face_locations(image)

找到并且控制图像中的脸部特征

找到并勾勒出每个人的眼睛、鼻子、嘴和下巴。

import face_recognition
image = face_recognition.load_image_file("your_file.jpg")
face_landmarks_list = face_recognition.face_landmarks(image)

找出脸部特征对很多重要的事情都非常有用。但是你也可以用它来做一些「蠢事」,比如数字化妆(美图):

识别图片中的人脸

识别每张图片中的人物。

import face_recognition
known_image = face_recognition.load_image_file("biden.jpg")
unknown_image = face_recognition.load_image_file("unknown.jpg")

biden_encoding = face_recognition.face_encodings(known_image)[0]
unknown_encoding = face_recognition.face_encodings(unknown_image)[0]

results = face_recognition.compare_faces([biden_encoding], unknown_encoding)

你甚至可以使用该库和其他的 Python 库执行实时人脸识别

See this example for the code.

要求

  • Python 3+ 或 Python 2.7

  • macOS 或 Linux (Windows 未测试)

  • 还可在树莓派 2+上运行(按照具体指令来安装运行:https://gist.github.com/ageitgey/1ac8dbe8572f3f533df6269dab35df65)

  • 预配置的 VM 图像同样可用。

使用pin3从pypi安装这一模块

pip3 install face_recognition

重要提示:pip 尝试编译 dlib 依赖时很可能会遇到一些问题。如果遇到问题,前往该地址(https://gist.github.com/ageitgey/629d75c1baac34dfa5ca2a1928a7aeaf)从来源(而不是 pip)中安装 dlib,从而修复该错误。

How to install dlib from source

手动安装 dlib 后,再次运行 pip3 install face_recognition,完成安装。

如果安装方面还有问题,你还可以试试预配置的 VM(https://medium.com/@ageitgey/try-deep-learning-in-python-now-with-a-fully-pre-configured-vm-1d97d4c3e9b)

用途

命令行界面

安装 face_recognition 时,你会得到一个名为 face_recognition 的简单命令行程序,该程序可用于识别照片或装满照片的文件夹中的人脸。

首先,你需要提供一个包含图片的文件夹,且每张图片中的每个人你都认识。每个人有一个图像文件,文件名就是图片中人物的名字:

known

然后,你需要再建一个文件夹,包含你想要识别的图像文件:

unknown

之后,你仅需要在已知人物文件夹和未知人物文件夹(或单个图像)中运行 face_recognition 命令,该程序会告诉你每个图像中的人物是谁:

$ face_recognition ./pictures_of_people_i_know/ ./unknown_pictures/

/unknown_pictures/unknown.jpg,Barack Obama
/face_recognition_test/unknown_pictures/unknown.jpg,unknown_person

每张人脸的输出结果只有一行,由文件名和找到的人物名组成,中间用逗号分隔。

 unknown_person 是未与已知人物文件夹中任何照片相匹配的人脸。

如果你只想知道每张照片中的人物姓名,不在意文件名,那么你可以采用以下做法:

$ face_recognition ./pictures_of_people_i_know/ ./unknown_pictures/ | cut -d ',' -f2

Barack Obama
unknown_person

如果你的电脑配有多核 CPU,你就可以同时执行多个人脸识别任务。例如,如果你的系统有 4 个 CPU 核,你可以同时使用这 4 个 CPU 核,那么同样时间内处理的图像数量是原来的四倍。

如果你使用 Python 3.4 或更新的版本,传入--cpus <number_of_cpu_cores_to_use>参数:

$ face_recognition -cpus 4 ./pictures_of_people_i_know/ ./unknown_pictures/

你还可以传入--cpus -1,来使用系统中所有的 CPU 核。

Python 模块

使用 face_recognition 模块,几行代码轻松控制人脸,so easy! 

API 文件地址: https://face-recognition.readthedocs.io

自动定位图像中人物的脸部特征

Automatically find all the faces in an image

import face_recognition

image = face_recognition.load_image_file("my_picture.jpg")
face_locations = face_recognition.face_locations(image)

# face_locations is now an array listing the co-ordinates of each face!

See this example to try it out.

图像人脸识别

import face_recognition

image = face_recognition.load_image_file("my_picture.jpg")
face_landmarks_list = face_recognition.face_landmarks(image)

# face_landmarks_list is now an array with the locations of each facial feature in each face.
# face_landmarks_list[0]['left_eye'] would be the location and outline of the first person's left eye.

See this example to try it out.

Recognize faces in images and identify who they are

import face_recognition

picture_of_me = face_recognition.load_image_file("me.jpg")
my_face_encoding = face_recognition.face_encodings(picture_of_me)[0]

# my_face_encoding now contains a universal 'encoding' of my facial features that can be compared to any other picture of a face!

unknown_picture = face_recognition.load_image_file("unknown.jpg")
unknown_face_encoding = face_recognition.face_encodings(unknown_picture)[0]

# Now we can see the two face encodings are of the same person with `compare_faces`!

results = face_recognition.compare_faces([my_face_encoding], unknown_face_encoding)

if results[0] == True:
    print("It's a picture of me!")
else:
    print("It's not a picture of me!")

See this example to try it out.

Python 代码案例

All the examples are available here.

 


相关教程